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ABSTRACT 

 

 In this dissertation we use digital holographic quantitative phase microscopy to 

observe and measure phase-only structures due to induced photothermal interactions and 

nanoscopic structures produced by photomechanical interactions.   Our use of the angular 

spectrum method combined with off-axis digital holography allows for the successful 

hologram acquisition and processing necessary to view these phenomena with nanometric 

and, in many cases, subnanometric precision.  We show through applications that this has 

significance in metrology of bulk fluid and interfacial properties. 

 Our accurate quantitative phase mapping of the optically induced thermal lens in 

media leads to improved measurement of the absorption coefficient over existing 

methods.  By combining a mathematical model describing the thermal lens with that 

describing the surface deformation effect of optical radiation pressure, we simulate the 

ability to temporally decouple the two phenomena.  We then demonstrate this ability 

experimentally as well as the ability of digital holography to clearly distinguish the phase 

signatures of the two effects.  Finally, we devise a pulsed excitation method to 

completely isolate the optical pressure effect from the thermal lensing effect. 

 We then develop a noncontact purely optical approach to measuring the localized 

surface properties of an interface within a system using a single optical pressure pulse 

and a time-resolved digital holographic quantitative phase imaging technique to track a 
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propagating nanometric capillary disturbance.  We demonstrate the method’s ability to 

accurately measure the surface energy of pure media and chemical monolayers formed by 

surfactants with good agreement to published values.  We discuss the possible adaptation 

of this technique to applications for living biological cell membranes. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

This chapter presents a brief history of holography, an introduction to optical 

interactions with media along with the motivation for this research, and an outline of the 

organization of this dissertation.  The principles of holography contribute to several 

important imaging mechanisms necessary for our investigations of interactions of light 

and soft matter.  The thermal and weak optical pressure interactions of light and fluid 

matter have significant relevance in metrology of fluid and surface properties.  These 

principles will be introduced here and discussed in detail throughout the dissertation. 

 

1.1 Holography 

Holography was discovered by Dennis Gabor in 1948 as a technique in which the 

wavefronts from an object were recorded and reconstructed using a background reference 

wave in such a way that the amplitude and the phase of the wave field were recovered. 

Gabor called the recorded interference pattern a hologram from the Greek word holos, 

meaning whole, because it contained the full three-dimensional wave field as amplitude 

and phase [1-3]. In 1967, Joseph Goodman demonstrated the feasibility of numerical 

reconstruction of holographic images using a densitometer-scanned holographic plate [4]. 

Schnars and Juptner, in 1994, were the first to use a CCD camera interfaced with a 



2 

 

computer as the input, completely eliminating the photochemical process, in what is now 

referred to as digital holography [5-7].  

The application of digital holography in microscopy is especially important due to 

the narrow depth of focus of high-magnification systems [8, 9]. Numerical focusing to 

different image planes can be accomplished from a single captured hologram. Direct 

access to phase information can be used for numerical compensation for various 

aberrations of optical systems, such as wavefront curvature and anamorphism [10].  

Digital holography has been a particularly useful tool in such areas as metrology, 

deformation measurement, and vibrational analysis [11-13]. Digital holographic 

microscopy has been applied to imaging of microstructures and biological systems [11, 

14, 15]. 

 

1.2 Optical interactions 

 Measurement of optical radiation pressure effects can be a very useful tool in soft 

matter physics for the efficient characterization of fluid interfaces and membranes.  

Although it is one of the most noninvasive methods, very little work has been done in this 

area due to the difficulty in observing these effects.  Surface deformation on a fluid 

interface by optical radiation pressure using a continuous wave laser source is typically 

very weak.  The output power of these lasers, even when focused tightly on the surface, is 

often insufficient to overcome the surface tensions of most fluid interfaces enough to 

form readily observable deformations.  For this reason, pulse laser sources are often used 

to amplify laser intensity and, therefore, the resulting deformation to a more easily 

observable level [16].  Alternatively, standard liquids may be replaced with well-
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engineered temperature sensitive phase-separating microemulsions that form a fluid-fluid 

interface with exceptionally reduced surface tension near a critical temperature
 
[17, 18].  

The method often used to sense these deformations is far-field diffraction.  The bent 

surface of a fluid acts as a lens and the profile of the exiting laser beam
 
[16-18], or 

separate probing laser beam [19], can be analyzed to deduce the shape and size of the 

deformation. 

 It has been our intent to use the method of digital holographic microscopy to 

image such deformations with nanometric precision and length scales.  The quantitative 

phase analysis inherent to digital holography [20, 21] yields an imaging method which 

can observe very slight surface deformations of standard fluid-fluid interfaces by 

continuous wave or pulsed laser optical radiation pressure.  The freedom to choose from 

a potentially broad selection of fluids is advantageous as the optical properties are likely 

to be well known making conversion of the optical phase images to real physical 

deformations quite straightforward.  The relationship between surface deformation by 

known optical forces and other important surface properties, such as surface tension and 

viscosity, has been derived [22, 23]. 

 Many studies on optical radiation pressure have dismissed thermal effects simply 

due to the transparent nature of the media under observation.  In fact, even transparent 

media can have a thermal effect which is far dominant to the effect of optical radiation 

pressure.  For this reason, it was a necessary step to study and understand these effects in 

working toward the study of optical radiation pressure effects. 

 When a beam of incident light passes through a medium, that medium may absorb 

some of the energy of the beam.  This absorbed energy, in turn, will cause a change in 
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temperature of the absorbing region of the media which then will diffuse to other parts of 

the medium and its surroundings in a regular way determined by the thermal properties of 

the media involved.  Because the index of refraction is a temperature dependant property, 

the temperature gradient also causes a refractive index gradient.  This causes a change in 

the optical path length to any light incident through the affected area of the media.  This 

effect is referred to as thermal lensing and has been the focus of many other studies as an 

indicator of the optical and thermal properties of materials [24, 25]. 

 If a thermal lens is present during the course of an optical radiation pressure 

study, any far-field diffraction observed is actually the result of the superposition of the 

two lens effects.  Our use of digital holography as an imaging method has proven to be a 

valuable indicator of both thermal and optical effects.  Through our work in thermal 

lensing, it was possible to decouple these effects so that optical radiation pressure 

deformations could be easily observed.  As will be discussed in detail below, these 

deformations always result in a longer optical path length (positive phase shift) within the 

structure.  Meanwhile, the thermal lensing effect results in a shortened optical path length 

(negative phase shift).  Additionally, these two effects differ greatly in the time scale with 

which they occur.   

 It was the goal of our research to make use of these differences to produce 

quantitative phase analyses of the two effects with excellent accuracy and precision using 

a Mach-Zehnder configured digital holographic microscope with an integrated optical 

excitation arm.  The deformation can therefore be measured with nanometric precision 

enabling the possibility of calculating surface properties using non-invasive “light-only” 
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manipulation and imaging techniques.  This is ideal for our current work on fluid 

interfaces and the future application to biological cell membranes. 

 

1.3 Dissertation overview 

 This dissertation is organized in a way that should take the reader through the 

necessary steps of our research goals with similar reconstruction of the chronology of 

accomplishments.  Chapter 2 will provide the background and theory of digital 

holographic quantitative phase microscopy, the necessary imaging tool to achieve our 

high-precision, nanometric observations.  In chapter 3, we discuss not only the necessary 

mapping of the spatial and temporal behavior of the thermal lens, but apply our highly 

accurate and precise methods to make improved measurements of photothermal 

properties of media.  At this point, with the thermal lens, well-modeled and tested, we 

discuss our decoupling and observation of thermal and optical pressure effects using a 

continuous wave laser excitation source in chapter 4.  Then, with both of these effects 

modeled and tested, chapter 5 discusses our use of short laser pulsed excitation to 

produce a purely optical pressure effect and our successful, unique application of this 

achievement. 
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CHAPTER 2 

PHASE IMAGING 

 

 As will become quite apparent in the next few chapters, standard optical 

microscopy is insufficient to observe the structures presented in this dissertation.  In fact, 

some structures are merely the result of variations in index of refraction which would be 

invisible to a standard microscope regardless of the structure size.  Still other structures 

that we will discuss vary in physical dimensions on a scale that is far too small to be 

detected by standard light wavelengths.  In this chapter, the concept of phase imaging and 

quantitative phase imaging will be described as this is a necessary imaging tool to 

overcome these barriers [1-4]. 

 

2.1 Introduction 

Light may undergo phase variations as it passes through objects and media and 

structures within media.  These normally invisible phase variations can be converted into 

observable amplitude variations by a number of phase imaging techniques.  Some of the 

more popular techniques such as Zernike phase contrast (ZPC) and differential 

interference contrast (DIC) can qualitatively perform this conversion; however, if 

measurements are necessary, a quantitative technique must be employed. 
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In our research, we have used digital holographic quantitative phase microscopy 

(DH-QPM) so that our observations of phase modulation could be converted to real-

world measurements of properties and structures.  Rather than producing merely a 

qualitative contrast image of the phase differences, DH-QPM makes use of diffraction 

theory and holography to produce a complete phase variation map of the area of interest. 

 

2.2 Techniques 

 In this section we will discuss the qualitative phase contrast techniques as well as 

DH-QPM.   The contrast methods, ZPC and DIC, give insight into the development and 

usefulness of phase imaging while DH-QPM makes complete use of the three-

dimensional information that can be captured by a two-dimensional CCD array. 

 

2.2.1 Zernike phase contrast microscopy  

Phase contrast microscopy was first proposed by Frits Zernike in 1934.  It is a 

phase contrast-enhancing optical technique that can be used to produce high-contrast 

images of transparent specimens [5, 6]. 

Figure 2.1 shows a diagram of a phase contrast microscope and the schematic 

illustration of the phase contrast optical path.  Partially coherent illumination, from the 

light source is directed through a collector lens and focused through the annulus and 

condenser.  Wavefronts passing through the annulus illuminate the specimen and pass 

through unperturbed or are diffracted by structures and phase gradients present in the 

sample.  Both non-diffracted and diffracted light waves are collected by the objective and 
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separated at the rear focal plane by the phase plate, then focused at the image plane to 

form the final phase contrast image observed by the camera. 

 

Figure 2.1.  Zernike phase contrast microscope. 
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2.2.2 Differential interference contrast microscopy  

Differential interference contrast microscopy uses interferometry of two polarized 

light beams which take different paths through a sample [7]. The length of each optical 

path differs causing the beams to interfere when they are combined.  This gives the 

appearance of a three-dimensional image due to the resulting contrast.  

A schematic of a DIC microscope is shown in Figure 2.2.  The incoming light is 

polarized and then split into two beams of perpendicular polarization by the Wollaston 

prism. These two beams are focused by the condenser so that they pass through two 

adjacent points in the sample separated usually by a value similar to the resolution of the 

microscope.  The two optical paths result in a phase difference.  The two beams then pass 

through the objective lens which focuses the beams for the second Wollaston prism to 

recombine them at a single polarization causing them to interfere due to phase variation.  

The full resulting image is therefore a combination of two bright field images slightly 

offset from one another, thus containing amplitude variations representing the phase 

variations. 
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Figure 2.2.  Differential interference contrast microscope. 
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2.2.3 Digital holographic microscopy.  

In ZPC and DIC microscopy, the phase to amplitude conversion is nonlinear; 

therefore, these methods cannot be used for quantitative phase analysis.  Quantitative 

phase information yields a measure of the optical path length the light has travelled.  

Thus, a quantitative phase image can be converted to physical thickness or optical density 

variations within the sample.  A quantitative phase image, therefore, truly carries three-

dimensional information. 

Due to advancement in computer processing speeds and the availability of high-

resolution CCD cameras, digital holography has emerged in recent years as a powerful 

quantitative phase imaging technique.  Just as in conventional holography, digital 

holographic recording is done optically, but the recording media is a CCD array, which 

allows for easy digitization and storage of the hologram. This recording then contains 

both the amplitude and phase information of the signal.  

After the hologram is recorded, the process of reconstructing the amplitude and 

phase information is accomplished by numerically diffracting and propagating a 

reference wave through the hologram.  The amplitude and phase maps produced are 

simply the amplitude and phase of a set of complex numbers. The process of holographic 

reconstruction is therefore reduced to a numerical diffraction problem, which is done 

entirely by a computer.  A schematic of this process is shown in Figure 2.3.  
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Figure 2.3.  Digital holography by angular spectrum method. 
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One of the main advantages of digital holography is that image processing 

algorithms can be easily applied to various stages of the process.  In our research, we use 

the angular spectrum method of numerical processing which provides significant 

advantages in filtering in Fourier domain, aberration correction, and numerical focusing. 

 

2.3 Digital holography – Angular spectrum method[8,9] 

Numerical diffraction is the basis for digital holography and can be described by 

the Huygens convolution method, the Fresnel transform method, and the angular 

spectrum method (ASM).  For our purposes we have chosen the angular spectrum method 

of numerical diffraction for some of its advantages which will be discussed shortly.  The 

holographic image is numerically converted into Fourier space, the angular spectrum, 

which is then filtered to include only the real image peak.  This filtered angular spectrum 

is propagated to the appropriate distance (such as to the focal plane of interest) before 

being reconstructed, by an inverse Fourier transform, back into real space as an array of 

complex numbers containing the complete amplitude and phase profile of the sample. 

There are several advantages inherent to the angular spectrum method over the 

more commonly used Fresnel transform and Huygens convolution methods.  The ASM 

maintains consistent pixel resolution, has no minimum reconstruction distance, it lends 

itself to easy filtering and compensation of noise and aberration, and has increased 

computational efficiency.  Once the angular spectrum is calculated at 0z =  by a Fourier 

transform of the optical field, the field at any other z-plane can be calculated by 

propagation in z followed by just one more Fourier transform.   The Fresnel and Huygens 

convolution methods require two or three Fourier transforms for each value of z.  
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The theory behind digital holography is well understood and characterized for the 

ASM.  Suppose 0 0 0( , )E x y  represents the two-dimensional input optical field at the 

hologram plane (the CCD intensity image).  Then, the input angular spectrum at this 

plane is given by the Fourier transform, 

 0 0 0 0 0 0 0 0 0

1
( , ) { } ( , ) exp[ ( )]

2
x y x yA k k F E dx dy E x y i k x k y

π
= = − +∫∫  (2.1) 

where xk  and yk  are the spatial frequency components and 2 /k π λ= .  According to the 

principle of Fourier transform, this spectrum represents the various plane-wave 

components that comprise the input hologram.  The input field, of course, can be 

immediately retrieved by an inverse Fourier transform of the angular spectrum at this 

plane, 

 1

0 0 0 0 0 0 0

1
( , ) { } ( , ) exp[ ( )]

2
x y x y x yE x y F A dk dk A k k i k x k y

π
−= = +∫∫ . (2.2) 

The exponential, 0 0exp[ ( )]x yi k x k y+ , is simply the projection of a plane-wave 

propagating along the vector, ( , , )x y zk k k=k  on the plane, 0 0( , )x y  where, 

 2 2 2

z x yk k k k= − − . (2.3) 

So the entire input field, 0E , is a projection of many plane-wave components propagating 

in various directions, k , with complex amplitudes given by the spectrum, 0 ( , )x yA k k .  If 

the field is propagated by a distance, z , then each plane-wave component acquires the 

phase factor, exp( )zik z .  The output field then becomes, 
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 0

1
( , ; ) ( , )exp[ ( )]

2
x y x y x y zE x y z dk dk A k k i k x k y k z

π
= + +∫∫  (2.4) 

which is simply the inverse Fourier transform of 0 ( , ) exp( )x y zA k k ik z . 

 

2.4 Conclusion 

 We can make several observations from the formulation of the ASM.  First, we 

note here that the square root factor from eq.(2.3) requires that 2 2 2

x yk k k+ ≤  which 

means the diffraction imposes a low-pass filter on input spatial frequencies such that 

input structures finer than the wavelength will not propagate to far-field probes.  

Secondly, the description above is based on the fundamental properties of the Fourier 

transform without the need to impose boundary conditions.  In addition, the diffraction is 

constructed from well-behaved plane waves where other methods are based on spherical 

waves which inherently require singularities at the point sources.  The Fresnel transform 

method also requires the approximation factor, r z≈ ,  where the ASM does not.  These 

advantages have important consequences when the integrals are discretized for numerical 

diffraction as described in [9]. 

 The ASM method lends itself to easy filtering of unwanted noise and phase 

aberration as well.  The angular spectrum filter can be easily and immediately adjusted in 

shape or size to avoid spurious noise from the direct image or other unwanted optical 

effects.  In certain situations, it is even possible to remove the direct image information 

from the angular spectrum by storing separate images of the reference and object beams 

alone and subtracting their angular contribution.  This would allow for a larger region 
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around the image peak of the angular spectrum and conserve lateral resolution.  

Geometrical wavefront aberration, such as spherical or elliptical, can be simply 

subtracted from any plane of interest by applying the necessary array of mathematically 

defined phase factors.  Additionally, in some cases, general aberration can be nearly 

eradicated by storing and subtracting a background reference hologram.  This reference 

hologram, just like the input hologram, contains the general phase aberration at every 

plane and can therefore be propagated and removed as different planes of interest are 

selected without the need for additional holograms.  In the case of most of our 

experiments, this method is applicable and of high importance in the improvement of our 

measurable results.  Figure 2.4 shows an example of this compensation. 

 

Figure 2.4.  Phase aberration compensation.  Elliptical phase aberration resulting from 

wavefront curvature mismatch between the reference and object beams (left) has been 

removed by numerical compensation (right). 
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CHAPTER 3 

THERMAL LENSING 

 

 In the pursuit of ultimately studying the effect of optical radiation pressure on the 

surface of a fluid, it was first very important to fully study and understand thermal effects 

of optical excitation.  The use of quantitative phase imaging as the method of detection 

means sensitivity to both dimensional changes and optical property changes.  In fact, we 

have taken advantage of the formation of the optically induced thermal lens described 

below to develop an improved method of determining the photothermal properties of 

transparent media.  In this chapter, the thermal lens will be described and measured both 

spatially and temporally and the results will be used as a sensitive tool for the 

measurement of the absorption coefficient of the media involved. 

 

3.1 Introduction 

When a beam of incident light passes through a medium, that medium may absorb 

some of the energy of the beam.  This absorbed energy, in turn, will cause a change in 

temperature of the absorbing region of the media which then will diffuse to other parts of 

the medium and its surroundings in some regular way described by the thermal properties 

of the media involved.  Because the index of refraction is a temperature dependent 

property, the temperature gradient also causes a refractive index gradient.  This 
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modulates variation in optical path length in these regions to light incident on the affected 

area of the media.  This effect is referred to as thermal lensing (depicted in Figure 3.1) 

and has been the focus of many other studies as an indicator of the optical and thermal 

properties of materials [1,2]. 

 

Figure 3.1.  Cross-sectional representation of a thermal lens in a cuvette of liquid.  Red 

line indicates a heat source while color gradient indicates the resulting temperature 

gradient from thermal diffusion. 
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 Because of the change in optical path length, a resulting phase shift can be 

detected at a plane on the far side of the medium.  Both a 2D infinite and a 3D finite 

model have been developed to associate this phase shift with the medium’s absorption 

coefficient for a cw laser induced mode-mismatched dual beam set up such as that used 

in the current study [3,4].  The 2D infinite model has the assumption, among others, that 

the sample thickness is large enough that axial heat flow and sample edge effects can be 

ignored.  This method becomes inadequate for the study of thin-film samples.  The 3D 

finite model is able to successfully describe samples of all thicknesses; however, it lacks 

the convenient mathematical relation to thermo-optical properties like the 2D infinite 

model.  For ease and freedom of setup, it is wise to choose sample parameters that are 

compatible with the 2D model for studies involving such conclusions. 

 

3.2 Theory 

 To maintain validity of the 2D infinite model, several assumptions are made and 

experimental design should take these into account.  The sample cell thickness should be 

short compared to the confocal distance of the beams to ensure the spot size remains 

relatively constant through the sample.  The sample cell dimensions should be large 

compared with the excitation beam radius so as both radial and axial edge effects can be 

ignored.  The sample should absorb very little power to avoid convection effects.  

Finally, the temperature coefficient of refractive index, 
dn

dT
, should be constant in the 

range of temperatures observed.  With these assumptions in mind the laser induced 

change in temperature within the sample can be described.  Using expressions for the 
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heat generated in a sample by a Gaussian excitation beam and the corresponding solution 

to the heat transfer equation, ref. [3] has derived the following relation, 

 
2 2

2

0

2 1 2 /
( , ) exp

1 2 / 1 2 /

t
P r w

T r t dt
c w t t

α
π ρ τ τ

 
′∆ = − ′ ′+ + 

∫  (3.1) 

where r is the radial distance from the beam axis, t is the time of exposure to the 

excitation beam, P is the total excitation beam power at the sample, α , c, and ρ  are the 

absorption coefficient, specific heat, and density of the sample, respectively, and w is the 

excitation beam radius in the sample. The characteristic thermal time constant,τ , is given 

by 
2

4

w cρ
τ

κ
=  with thermal conductivity, κ .  The resulting refractive index gradient can 

be described by, 

 0( , ) ( , )
dn

n r t n T r t
dT

= + ∆  (3.2) 

where 0n  is the index of refraction at the starting temperature of the sample.  This leads 

directly to phase shift described by, 

 [ ] [ ]2 2
( , ) (0, ) ( , ) (0, )

dn
l n r t n t l T r t T t

dT

π π
φ

λ λ
= − = ∆ −∆  (3.3) 

where λ  is the wavelength of the probe beam and l is the thickness of the sample.  

Substituting Eq. (3.1) into Eq. (3.3), the phase shift can be rewritten as, 

 
2 2

0

1 2 /
1 exp

1 2 / 1 2 /

t
r w dt

t t
φ θ

τ τ τ

  ′ 
= − −  ′ ′+ +  
∫  (3.4) 
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where, 

 
( / )P l dn dTα

θ
κλ

= − . (3.5) 

 

3.3 Experiments 

Previous experimental methods have been developed to approximate the phase 

shift described above and have been used to measure very low absorption coefficients of 

materials with good agreement to expected values [1,2].  These methods detect the 

intensity, with and without an induced thermal lens present in the media, through a 

pinhole at a distance several meters away from the sample.  This difference in intensity is 

used, through further mathematical approximation and fitting, to determine the change in 

the wavefront of the incident beam and, therefore, the phase shift resulting from the 

thermal lens [1-5].  While this is a sensitive photothermal spectroscopy method [6], this is 

not a direct measure of the resultant phase shift and gives rise to additional error as 

discussed in [4]. 

 Since digital holography is a phase imaging method [7,8], we can measure this 

phase shift without further approximations in a process similar to photothermal 

interferometry [9].  In addition, there is no necessary minimum distance from the thermal 

lens to the detector plane when measuring by our method.  In the studies that follow, we 

will show that the thermal lens behaves as predicted by the 2D infinite model both 

spatially and temporally.  It will also be shown that our method is an excellent tool for the 

application of photothermal property measurement. 
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3.3.1 Measurement application using high-power excitation 

It was the goal of this study to image the induced thermal lens directly and 

accurately and to use this compact, fast, and robust method to determine the absorption 

coefficients of transparent materials far below the detection level of standard 

spectrometers and with improved accuracy and precision over traditional photothermal 

spectroscopy methods. 

Figure 3.2 shows a diagram of the experimental apparatus. A Mach-Zehnder 

interferometer is used to create the hologram of the sample using low power (~2.5mW) 

633-nm laser light.  The imaging beams (from a single source) are delivered by a 50:50 

split fiber-optic cable (reference/probe beams), which are then collimated and passed 

through polarizers upon entering the system. The polarizers can be adjusted to aid in 

beam level balancing.  The two beams then pass through matched microscope objectives 

before being superposed with one another by the beam combiner, differing only in that 

the probe beam path includes the transparent sample as shown.  The resulting hologram is 

recorded by a digital CCD camera placed atop the setup and passed into our LabVIEW 

personal computer platform for amplitude and phase reconstruction based on the angular 

spectrum method [10]. 
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Figure 3.2.  Experimental apparatus. The excitation beam (green) is focused downward 

through the sample by the probe-shared microscope objective (MO). The probe beam 

(red) is the object arm of the Mach-Zehnder interferometer and passes upward through 

the sample, combines with the reference beam, and creates the hologram captured by the 

CCD camera. 

 

A high powered 532-nm cw laser beam is delivered to the integrated optical 

excitation arm from a fiber optic cable and collimation arrangement. The beam is then 

passed through a 10:1 focal length lens pair to create a much reduced collimated beam 

radius. A dichroic mirror reflects this excitation beam down toward the sample while 

allowing the probe beam to transmit up toward the CCD camera. The excitation beam 
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passes through the shared microscope objective which focuses the already thin beam 

through the sample area.  The microscope objectives are chosen to have long effective 

focal lengths to aid in meeting the requirements of the 2D infinite model described above.  

A removable red bandpass filter is placed just in front of the CCD camera to filter any 

532 excitation light leaking through the dichroic mirror. This “leaky” light, however, can 

be used to find the excitation beam radius and spot location as well as its waist along the 

beam axis by temporarily removing the red filter.  The excitation beam radius, w, is 

defined as the radius at which our Gaussian beam intensity reduces to e
-2

 of its maximum 

value.  With the red filter in place, a hologram, containing complete phase and amplitude 

information, is captured by the CCD camera and processed by our software routines to 

reconstruct the phase image in real time both with and without excitation. 

The sample consists of a pure liquid in a standard glass cuvette of cross-sectional 

area, 5 mm by 10 mm, with a sealable lid.  This sample is then placed on the sample stage 

on its side oriented with a 5 mm path length.  While viewing the phase image, with the 

optical excitation beam on, the object stage was translated along the beam path (z-

direction) until the focus of the excitation beam was centered within the sample.  At this 

position, a well-defined phase signal, i.e. the thermal lens, was clearly observed (Figure 

3.3).  The faint diagonal fringing is a result of stray light interference within the setup.  

This can be removed through additional software filtering or by adjustment of the 

apparatus; however, this was not necessary at this time as the aberration did not affect our 

current measurement goals.  A cross-section through the center of this thermal lens was 

used to plot the profile of the phase shift as a function of radial distance from the z-axis 

of the excitation beam (Figure 3.4).  It should be noted that, due to the time-sensitivity of 
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the thermal effect, attention must be given to excitation beam exposure time to ensure 

measurements are taken in the proper regime.  All measurements for the purpose of 

determination of absorption coefficient, for example, were performed at exposure times 

greater than 2000τ  (in the present case, 30 s) to ensure steady-state regime was 

approached.  Though the model is time-resolved and our work, soon to be discussed, 

demonstrates excellent temporal agreement [11], near steady-state measurements 

drastically reduce error due to timing of measurements.  
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Figure 3.3.  Phase images of methanol with, A) no excitation beam and B) 700mW 

excitation beam power. The phase scale of both images ranges from 0 (black) to 2π 

(white) and the spatial scale bar is 100µm. The dashed line indicates the selected cross-

section used for further analysis. 
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Figure 3.4.  Cross-sectional profile of the thermal lens shown in Figure 3.3B (dashed 

line). 

 

The experimental parameters and determined absorption coefficients at 532 nm, 

αexp, for methanol and ethanol are shown in table 3.1.  The measured phase shift at t = 30 

s and r = 900 µm under 700mW excitation power was used to find the absorption 

coefficient that solved the 2D infinite model at this position and time.  This determined 

absorption coefficient was then used to predict the entire phase profile of the thermal lens 

formed at varying excitation powers from 0 – 550mW.  Figure 3.5 shows the raw phase 

data for methanol and ethanol at several of these powers and the predictions of the model 

with excellent fit.  The displayed results are characteristic of the full range of powers 

tested.  Note also that each plot of experimental data posted here has not been averaged, 
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but is the result of a single hologram.  If desired, higher phase resolution can be achieved 

by averaging repeated phase profiles of averaging through symmetry in post-process or 

incorporating this into the software routine for real-time measurements; however this was 

not necessary for the goals of the current study.  

Table 3.1. Experimental Parameters for methanol and ethanol. 

 

 

 

 Methanol Ethanol 

w 43 µm 43 µm 

l 5 mm 5 mm 

dn/dT -3.9 x 10
-4 

°C
-1

 -4.0 x 10
-4 

°C
-1

 

κ .202 W/m/°C .167 W/m/°C 

λ 633 nm 633 nm 

P 0-550 mW 0-550 mW 

τ 4.7 ms 5.7 ms 

t 30 s 30 s 

αexp (3.6±.3)  x 10
-4

 cm
-1

 (2.4±.2)  x 10
-4

 cm
-1
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Figure 3.5.  Experimental data (scatter plots) and model predictions (solid lines) at 

330mW, 440mW, and 550mW excitation powers for both A) methanol and B) ethanol. 

 

 

Methanol and ethanol were chosen for this study due to their immediate 

availability, ease of finding the necessary photothermal parameters, and the availability 

of results from previous experimental methods yielding absorption coefficients for 

comparison.  We have measured absorption coefficients of (3.6±.3) x 10
-4

 cm
-1

 and 

(2.4±.2) x 10
-4

 cm
-1

 for methanol and ethanol, respectively.  Previously, these values had 

been measured using the traditional “pinhole” method mentioned above as (5.9±.5) x 10
-4

 

cm
-1

 and (6.8±.5) x 10
-4

 cm
-1

 for methanol and ethanol, respectively [2].  We have 

measured the values with improved precision, but what is more noteworthy is the 

difference in relative absorption coefficient between these two liquids.  By imaging the 
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phase profiles directly with digital holography, this relation is straightforward and 

unmistakable suggesting much improved accuracy over the traditional method. 

As mentioned earlier, there was some aberration (fringing in Figure 3.3) in the 

phase images which did not interfere with the purpose of the preceding experiments.  

This was explored before moving on to successive experiments and was corrected by 

slight adjustment to the imaging beam path, thus eliminating some arbitrary reflection 

from the structures of the apparatus.  An example of the improved result is displayed in 

Figure 3.6. 
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Figure 3.6.  Improved phase images of a sample, A) with no excitation and B) with 

optical excitation. The phase scale of both images ranges from 0 (black) to 2π (white) and 

the spatial scale bar is 100µm. The dashed line indicates the selected cross-section used 

for further analysis. 
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3.3.2 Thermal lens time-resolution [11] 

The absorption coefficient of methanol was determined in our previous work as 

indicated above.  This value and the other experimental parameters for methanol are 

listed in table 3.2.  The data from several time steps during the excitation event are 

displayed in Figure 3.7 as scatter plots with the model predictions superposed as solid 

line plots.  The camera speed here was 20 frames/sec, so, the first observable frame could 

have occurred anywhere between 0 and 50 ms and was approximated from the series fit 

to be 25 ms.  Subsequent captured frames occurred at 50 ms intervals, as indicated.  

There is clearly excellent agreement between the predicted and experimental values. 

Table 3.2. Experimental parameters for methanol. 

 

 

w 50 µm 

l 5 mm 

dn/dT -3.9 x 10
-4 

°C
-1

 

κ .202 W/m/°C 

λ 633 nm 

P 750 mW 

τ 4.7 ms 

t 0 – 1500 ms 

αexp 3.6 x 10
-4

 cm
-1
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Figure 3.7. Experimental data (scatter plots) and 2D infinite model predictions (solid 

lines) at several time-resolved stages of the thermal lens excitation event in methanol. 

 

 These results are important in the experiments to follow, both in this chapter and 

even more importantly in the next two chapters.  Knowing that the time sensitivity of the 

thermal lens formation is well predicted by the model allows the use of the thermal lens 

as a measurement tool for photothermal properties at greater speeds with little or no cost 

to the precision of the our method.  Additionally, as we will see in the following chapters, 

this behavior is important in ultimately decoupling this thermal effect from overlapping 

optical radiation pressure effects. 

 

3.3.3 Improved precision for standard-power excitation 

Our previous absorption coefficient experiments have shown that, in fact, 

improved accuracy and precision over traditional methods is achieved through the use of 
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digital holography and a high-power excitation beam.  In this section, we describe our use 

DH-QPM with an improved apparatus and a higher precision method to map the thermal 

lens and measure the absorption coefficient of transparent media using low excitation 

power.  It was the goal of this study to make full use of the data collected by an optimized 

system and achieve improved measurement precision with standard optical laboratory 

components. 

Figure 3.8 shows a diagram of the improved experimental apparatus. A Mach-

Zehnder interferometer is used to create the hologram of the sample using low power (~1 

mW) 532-nm laser light.  Instead of using a fiber-optic splitter to deliver separate 

reference and object beams into the interferometer, the single imaging beam arrives 

collimated at the first beam splitter of the interferometer which transmits half the beam 

into the reference arm and reflects half the beam into the object arm of the setup.  The 

beams each follow a similar path, through matching singlet objective lenses (instead of 

compound microscope objectives), before recombining by another beam splitter with the 

main difference being that the object beam has passed through the sample area of the 

interferometer.  The interference of the phase-modulated object beam with the reference 

beam creates the hologram.  This hologram is recorded by a digital CCD camera placed 

atop the setup and passed into our LabVIEW personal computer platform for amplitude 

and phase reconstruction based on the angular spectrum method [10] 
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Figure 3.8.  Experimental apparatus. The excitation beam (red) is reflected downward by 

the dichroic mirror (DM) through the sample by the probe-shared objective lens. The 

probe beam (green) is the object arm of the Mach-Zehnder interferometer and passes 

upward through the sample, combines with the reference beam, and creates the hologram 

captured by the CCD camera. 
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An integrated optical excitation arm delivers a 30 mW, 632.8 nm cw laser beam 

to the system (as opposed to the 750 mW excitation used previously). The beam is passed 

through a 10:1 focal length lens pair to create a much reduced beam radius. A dichroic 

mirror reflects this excitation beam down toward the sample while allowing the probe 

beam to transmit up toward the CCD camera. The excitation beam passes through the 

shared objective lens which focuses the already thin beam through the sample area.  The 

objective lenses are chosen to have relatively long effective focal lengths to aid in 

meeting the requirements of the 2D infinite model described previously.  A removable 

green bandpass filter is placed just in front of the CCD camera to filter out any red 

excitation light leaking through the dichroic mirror. This “leaky” light, however, can be 

used, as before, to profile the excitation beam by temporarily removing the green filter.  

The excitation beam radius, w, is defined as the radius at which the Gaussian beam 

intensity reduces to e
-2

 of its maximum.  With the green filter in place, a hologram, 

containing complete phase and amplitude information, is captured by the CCD camera 

and processed by our software routines to reconstruct the phase image both with and 

without excitation. 

The sample consists of a pure liquid in a glass cuvette 5 mm by 10 mm by 45 mm 

with a sealable lid.  With the excitation beam profiled and adjusted to a desired radius via 

the excitation arm lenses, the sample is placed on the sample stage on its side oriented 

with a 5 mm path length.  The sample stage can be adjusted in z to optimize the sample’s 

location for the desired beam radius.  At this time, all general phase aberration, including 

wavefront curvature mismatch, can be easily compensated for by storing a background 

phase image and subtracting this from subsequent images. While viewing this baseline 
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phase image (Figure 3.9(a)), the optical excitation beam is turned on and a thermal lens 

becomes visible (Figure 3.9(b)).   

 

Figure 3.9.  Example phase maps of a sample with (a) no excitation and (b) optical 

excitation resulting in a thermal lens (higher power excitation was used here to improve 

structure visibility for print).  Phase shift is represented as darker for smaller values and 

lighter for higher values.  Field of view is 1000 µm. 

 

Our previous work has demonstrated excellent temporal, as well as spatial, 

agreement with the 2D infinite model as described previously.  Therefore, in the current 

study, we use optically triggered timing to capture the data at precisely 4000 ms after 

excitation begins with a shutter speed of less than 100 µs.  At this time, the rate of change 

of thermal lens phase signal is significantly reduced (~0.001 rad/s) that any error from 

our timing mechanism would be negligible.  

Table 3.3 indicates the experimental parameters for the current study of benzyl 

alcohol, a transparent liquid.  The absorption coefficient at 632.8 nm, αexp, was 
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determined experimentally to be (6.4±0.1) x 10
-4

 cm
-1

 as described herein.  By taking a 

single cross-section through the center of the thermal lens structure in the phase map, a 

profile of the thermal lens phase signal vs. position is obtained as shown in Figure 3.10.  

Due to an improved apparatus, this raw data demonstrates an impressive precision (better 

than ±0.01 rad); however, it does not adequately represent the large amount of data 

collected by our method. 

Table 3.3. Experimental Parameters for Benzyl Alcohol. 

1
CRC Handbook of Chemistry and Physics, 2008 

2
H. El-Kashef, G.E. Hassan, I. El-Ghazaly, App. Opt. 33, 3540 (1994) 

 

Parameter Symbol Value 

Power P 30 mW 

Excitation Beam Radius w 70 µm 

Probe Beam Wavelength λ 532 nm 

Sample Cell Path Length l 5.0 mm 

Excitation Duration t 4.000 s 

Refractive Index (20°C)1 n0 1.540 

Thermal Conductivity
1
 κ 0.159 W/m/°C 

Specific Heat Capacity
1
 c 2.02 J/g/K 

Density
1
 ρ 1.044 g/ml 

Thermal Time Constant τ 16.2 ms 

Temp. Coefficient of RI
2
 dn/dT -3.5 x 10

-4 
°C-1 

Absorption Coefficient αexp (6.4±0.1) x 10
-4

 cm
-1
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Figure 3.10. Single cross-section through center of the thermal lens phase structure in 

benzyl alcohol. 

 

To take full advantage of the 2-dimensional array of data, we consider the radial 

symmetry of the structure being measured. The center of the thermal lens is determined 

by location of X- and Y- minima and a suitable radius is selected.  A simple algorithm 

averages the phase data around the circumference of the circle for each radial distance to 

produce a 1-dimensional array of averaged phase values vs. radial distance.  We elected 

to use 100 points around the circumference for this azimuthal averaging.  This result is 

plotted in Figure 3.11 along with the model prediction using the experimentally 

determined absorption coefficient.  Though the deviation is very small, we note here that 

there is greater deviation toward the center of the structure where the model assumes a 

constant excitation beam radius through the sample.  This, of course, is not actually true 
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for a focused excitation beam and this small difference is detectable by the current 

method.  The data taken at a sufficient distance from this artifact, in this case 170 µm or 

further from the origin, never deviates more than .002 rad from the model prediction. 

 

Figure 3.11.  Phase shift vs. radial distance from center of excitation beam for 

experimental data (dotted) and model predictions (solid) for a thermal lens in benzyl 

alcohol.  Shift at the origin is set to zero as a reference to the rest of the thermal lens. 

 

We display the entire radial path here to demonstrate the strength of the 

relationship between the experiment and the model, however, the determination of the 

absorption coefficient only requires the selection of a single radial location.  The most 

suitable selection is typically the farthest distance from the center of the thermal lens 
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structure that still allows complete circular averaging, but, as demonstrated, a wide range 

of selections are available with little or no consequence.  Additionally, if the raw data is 

particularly noisy, the number of points around the azimuth for averaging can be 

increased (within the confines of the data array size). 

 

3.4 Discussion and Conclusion 

 Noise levels of our system were determined between each measurement by 

imaging the sample with no excitation beam present and taking the standard deviation of 

this phase profile to indicate background noise.  Values from the experiments described 

in section 3.3.1 ranged between 0.03 and 0.17 radians with 0.12 radians being typical.  

While this resulted in significantly improved measurement of optical and thermal 

properties, we were able to achieve resolution better than an order of magnitude through 

improved apparatus alone (i.e. before azimuthal averaging).  In the experiments from 

section 3.3.3, we were able to reduce background noise to between .003 and .015 radians 

with .01 radians being typical.  In addition to the determination of absorption coefficient, 

the phase shift caused by a thermal lens has a direct mathematical relationship with shifts 

in temperature, index of refraction, and optical path length of the media as described by 

Eq.(3.3).  As such, a direct measurement of the phase shift will yield these parameters 

with similar relative precision.  By substituting the current typical noise level of our 

system (0.01 radians) into Eq.(3.3) and solving for the temperature shift difference, it is 

shown that the absolute difference in temperature between any two points can be 

determined to a precision of 0.0005 K.  Similarly, the shift in refractive index is 

determined with 1.7 x 10
-7

 precision.  Optical path difference is described by ( )l n∆  
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where l is our cuvette path length (5 mm) and ∆n is the refractive index difference.  

Therefore, at the current typical noise level, this system determines the optical path 

difference with a typical 0.8 nm resolution.  While these values of precision are based on 

the noise level of the system, the symmetry in this study permits improvement by almost 

another order of magnitude using the azimuthal averaging method described above. 

 We have successfully shown the usefulness of our method to obtain characteristic 

photothermal properties of pure substances.  Furthermore, through careful optimization of 

a DH-QPM apparatus using standard optics laboratory components, we have 

demonstrated the measurement of photothermal properties of pure substances with very 

high precision.  The currently described method could be immediately useful as a 

valuable tool in various analytical chemistry applications requiring high sensitivity [12-

14].  In fact, DH-QPM is capable of a full armory of such measurement through robust 

adaptability to alternative compact apparatus. 

In addition to its usefulness in chemical analysis, thorough testing and 

understanding of the thermal lens effect can be important in the observation of other 

optical effects.  Of particular interest to us is the nanometric measurement of optical 

radiation pressure deformation from photon momentum exchange across a fluid interface.  

This effect will also result in a phase shift measurable by digital holography; however, it 

is very weak compared to and would be typically dominated by the thermal lens effect.  

For this reason, we have tested the time-resolved regime of the model by imaging at 

shortened time scales as described in section 3.3.2.  This was done both to test the 

completeness of the model as well as to demonstrate that thermal effect presence is 

drastically reduced at very early time steps.  Using this knowledge and other controllable 
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parameters, the next chapter will demonstrate our ability to predictably decouple these 

photothermal effects from the photomechanical effects of optical radiation pressure. 
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CHAPTER 4 

CONTINUOUS WAVE OPTICAL RADIATION PRESSURE 

 

 The ability of digital holographic quantitative phase imaging to not only measure 

optical thickness with nano- and even subnanometric precision, but also to measure 

wavefront contours with similar lateral resolution to the CCD camera lends itself 

particularly well to the observation and measurement of the very weak optical radiation 

pressure effect on soft matter.  Having described the well-behaved spatiotemporal nature 

of the more prominent thermal lensing effect in the experiments of the previous chapter, 

it was merely an academic problem to model the combined phase contributions of both 

the photothermal and photomechanical properties of light interaction with fluid interfaces 

provided the assumption that the latter takes place on a negligibly shorter time scale is 

true. 

 In this chapter, we will derive a combined model for these two effects and provide 

sound reasoning for the assumption of the important difference in time scale.  We will 

then demonstrate a computer simulation showing the expected results and feasibility of a 

particularly favorable fluid interface.  Next, we will describe the construction of the 

apparatus and the development of the experiments capable of demonstrating the modeled 

phenomenon.  Our successful comparison between the experimental results and those 
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predicted by our combined model demonstrate another important step towards the 

complete decoupling of the photothermal and optical pressure effects on fluid media. 

 

4.1 Introduction 

Measurement of optical radiation pressure effects can be a very useful tool in soft 

matter physics for the efficient characterization of fluid interfaces and membranes.  

Although it is one of the most noninvasive methods, very little work has been done in this 

area due to the difficulty in observing these effects.  Surface deformation on a fluid 

interface by optical radiation pressure using a continuous wave laser source is typically 

very weak.  The output power of these lasers, even when focused tightly on the surface, is 

often insufficient to overcome the surface tensions of most fluid interfaces enough to 

form readily observable deformations.  For this reason, pulse laser sources are often used 

to amplify laser intensity and, therefore, the resulting deformation to a more easily 

observable level [1].  Alternatively, standard liquids have been replaced with well-

engineered temperature sensitive phase-separating microemulsions which will form a 

fluid-fluid interface with exceptionally reduced surface tension near a critical temperature 

[2,3].  The method often used to sense these deformations is far-field diffraction.  The 

bent surface of a fluid acts as a lens and the profile of the exiting laser beam [1-3], or 

separate probing laser beam [4], can be scanned in an attempt to deduce the shape and 

size of the deformation. 

It was our intent to use the method of digital holographic microscopy to image 

such deformations with nanometric precision and length scales.  The quantitative phase 

analysis inherent to digital holography [5-8] yields an imaging method which can observe 
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very slight surface deformations of standard fluid-fluid interfaces by true continuous 

wave optical radiation effects. The stable nature of the cw laser is preferred to a pulse 

laser, in the present case, for improved static surface deformation.  The freedom to 

choose from a potentially broad selection of fluids is advantageous as the optical 

properties will be preferably well-known making conversion of the optical phase images 

to real physical deformations quite straightforward.  The relationship between surface 

deformation by known optical forces and other important surface properties, such as 

surface tension and viscosity, has previously been derived [9, 10]. 

We have found that many studies on optical radiation pressure dismiss thermal 

effects simply due to the transparent nature of the media under study.  In fact, even 

transparent media can have a thermal effect which quickly becomes far dominant to the 

effect of optical radiation pressure.  For this reason, it was our intent to study and 

understand these effects as a necessary step in our work on optical radiation pressure as 

previously described. 

In summary, when a beam of incident light passes through transparent media that 

media may absorb some of the energy of the beam causing a rise in temperature of the 

local region of the beam.  This produces a temperature diffusion gradient mathematically 

described by the thermal properties of the media involved.  Because the index of 

refraction is a temperature dependent property, the temperature gradient also defines a 

refractive index gradient.  This causes a change in the optical thickness of these regions 

to light incident on the affected area of the media.  This effect is referred to as thermal 

lensing and has been the focus of many other studies as an indicator of the optical and 

thermal properties of materials [11, 12]. 
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If a thermal lens is present during the course of an optical radiation pressure 

study, any far-field diffraction observed is actually the result of the superposition of the 

two lens effects.  Our use of digital holography as an imaging method has proven to be a 

valuable indicator of both thermal and optical effects. With our continued attention to 

thermal lensing, it is our goal to decouple these effects so that optical radiation pressure 

deformations may be easily observed.  As will be discussed in detail below, these 

deformations will always result in an increased optical path length (positive phase shift) 

within the structure.  Meanwhile, the thermal lensing effect results in a shortened optical 

path length (negative shift).  Additionally, these two effects differ greatly in the time 

scale with which they occur as will be discussed below.   

It has been the goal of our ongoing research to make use of these differences to 

produce quantitative phase analyses of the two effects with excellent accuracy and 

precision using a Mach-Zehnder configured digital holographic microscope.  The 

deformation can therefore be measured with nanometric precision enabling the possibility 

of calculating surface properties using non-invasive “light-only” manipulation and 

imaging techniques.  This is ideal for both current work on fluid interfaces and future 

application to biological cell membranes. 

 

4.2 Theory 

 For thermal modeling, experimental dimensions were chosen as necessary for the 

application of the 2D infinite model which shall be described first.  To maintain validity 

of this model, several assumptions are made that govern experimental design.  The 

sample cell thickness should be short compared to the confocal distance of the beams to 
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ensure the spot size remains relatively constant through the sample.  The sample cell 

dimensions should be large compared with the excitation beam radius so as both radial 

and axial edge effects can be ignored.  The sample should absorb very little power to 

avoid convection effects.  Finally, the temperature coefficient of refractive index, 
dn

dT
, 

should be constant in the range of temperatures observed.  With these assumptions in 

mind, the laser induced change in temperature within the sample can be described by 

[13], 

 
2 2

2

0

2 1 2 /
( , ) exp

1 2 / 1 2 /

t
P r w

T r t dt
C w t t

α
π ρ τ τ

 
′∆ = − ′ ′+ + 

∫  (4.1) 

where r is the radial distance from the beam axis, t is the time of exposure to the 

excitation beam, P is the total excitation beam power at the sample, α, C, and ρ are the 

absorption coefficient, specific heat, and density of the sample, respectively, and w is the 

excitation beam radius in the sample. The characteristic thermal time constant, τ, is given 

by  
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with thermal conductivity, κ.  The resulting refractive index gradient can be described by, 

 0( , ) ( , )
dn

n r t n T r t
dT

= + ∆  (4.3) 

where 0n  is the index of refraction at the starting temperature of the sample.  This leads 

directly to phase shift due to the thermal lens described by, 
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where λ is the wavelength of the probe beam and l is the thickness of the sample.  

Substituting Eq.(4.1) into Eq.(4.4), this phase shift can be rewritten as, 
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 This gives a complete time-resolved picture of the phase behavior due to the 

relevant thermal effect.  This is the model that I have tested to show that sufficient 

reduction of the thermal effect can be achieved by reduction of excitation time.  In 

addition, Eq.(4.2) shows that the thermal time constant increases with the square of the 

excitation beam radius, thus making this an equally valuable parameter that can easily be 

controlled.  

 Now, the deformation effect of optical radiation pressure is based on conservation 

of momentum across an interface as described by, 

 1 2 1ˆ ˆ
n hv n hv n hv

N z N T R z p
c c c

 = − + 
 

�

 (4.6) 

where 1n  and 2n  are the refractive index of the first and second media, 

respectively, N represents the number of photons, T  and R  are the transmission and 

reflection coefficients, and p
�

 is the momentum transfer to the interface.  By solving this 

equation for the simple case of a flat interface with normal incident photons, 
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 (4.7)  

it becomes easy to see that the direction of momentum transfer, and therefore the 

deformation of the interface, will always point in the direction of the smaller refractive 

index material regardless of the direction of beam propagation.  This is because a photon 

gains momentum when moving into a higher refractive index medium.  This phenomenon 

was shown by Ashkin and Dziedzic in 1973
 
[1]. 

 A relation between this exchange of momentum and the actual physical 

deformation will now be derived.  The forces that must be overcome in order to create a 

surface deformation are those associated with buoyancy and surface tension (or more 

appropriately, interfacial tension).  The force associated with interfacial tension has a 

direct mathematical relation to the contact angle of the deformation as follows, 

 ˆ2 sintF w zπ σ θ=
�

 (4.8) 

with interfacial tension, σ , contact angle, θ , and w  is the excitation beam radius as this 

is expected to be the approximate radius of our induced deformation.  Since our proposed 

deformations are of nanometric height scale, interfacial tension is by far the more 

dominant of the two.  In fact, based on a typical deformation in the present case, the 

tension force is greater than 100 times that of the buoyant force as shown by, 

 
2.6 nN

( ) 23 pN

t

buoy b w

F

F Vgρ ρ

=

= − =
. 

Thus, buoyancy can be ignored.  The tension force, then, must be balanced with the force 

associated with the incident excitation beam, 
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where P is the excitation laser power just as above.  Combining Eq.’s (4.8) and (4.9) and 

solving for θ  we have, 
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Assuming a spherically growing deformation, we can use geometric relations to model 

the deformation height as a function of radial distance from the beam axis,   
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where 0h  is the maximum height of deformation (at r=0), 
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The phase shift then associated with this deformation would be, 

 ( )1 2

2
OP h n n

π
φ

λ
= − . (4.13) 

To get an expression for the time scale of the optically induced deformation, first 

consider the net force as a function of the growing contact angle, θ'. 

 ( ) ( )net t optF F Fθ θ′ ′= + . (4.14) 

Now, using the integral definition of average to find the average net force, 
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and acceleration from the relation, 
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a
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The time scale for the full deformation can be approximated by, 
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With these approximations we have developed a computer simulation to combine 

thermal and optical models to better predict the experimental parameters necessary to 

decouple the two effects.  Initial simulations showed promising results for optical 

radiation pressure experiments.  Figure 4.1 is an example simulation for benzyl alcohol 

and water, a promising pair of pure substances that layer with a previously measured low 

interfacial tension of 3.5 mN/m
 
[15] and a time scale of 16 µs from Eq.(4.17).  We begin 

by showing the predicted comparison of the two effects after a 2 second exposure to 

700mW excitation from a 50µm radius beam (Figure 4.1(A)).   It is seen here that any 

optical pressure deformation at the interface would be completely masked by the thermal 

lens (TL).  By reducing the exposure to only 10 ms, we see the thermal effect is 

substantially reduced, however, any surface deformation is still expected to be below the 

detection limit and still strongly overwhelmed by the TL (Figure 4.1(B)).  As mentioned 

above, increasing the excitation beam radius has a strong effect on the thermal time 

constant.  Therefore, in Figure 4.1(C) we have increased the beam radius to 500µm, but 
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left the exposure time at 10ms, to reduce the thermal effect while increasing the beam 

power to 5W to enhance the optical pressure effect.  The combined model now predicts 

that the optical pressure effect should dominate the phase image by more than 0.1 

radians.  This is well above the detection limit of our current setup and would be clearly 

evidenced in a successful conjugate experiment. 

 

Figure 4.1.  Model prediction for the thermal lens (TL) and optical pressure (Opt 

Press) effects for a sample of layered benzyl alcohol and water with an interfacial 

tension of 3.5 mN/m.  A) 700 mW, 50 µm beam excitation for a 2 second duration.  

B) Duration reduced to 10 ms.  C) 5 W, 500 µm beam excitation for 10 ms. 

 

4.3 Experiments  

The general apparatus and procedures for optical pressure excitation and 

measurement are similar to that for the thermal lens with some small modifications.  The 

experiments described here were performed with an improved version of the 

interferometer used in the experiments of sections 3.3.1 and 3.3.2 (i.e. before the 

redesigned apparatus introduced in section 3.3.3).  Figure 4.2 shows a diagram of the 

experimental apparatus. A Mach-Zehnder interferometer is used to create the hologram of 

the sample using low power (~2.5 mW) 633 nm laser light.  The imaging beams (from a 

single source) are delivered by a 50:50 split fiber optic cable (reference/probe beams), 
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which are then collimated and passed through polarizers upon entering the system. The 

polarizers can be adjusted to aid in beam level balancing.  The two beams then pass 

through matched microscope objectives before being superposed by the beam combiner, 

differing only in that the probe beam path includes the transparent sample area as shown.  

The resulting hologram is recorded by a digital CCD camera placed atop the setup and 

passed into our LabVIEW personal computer platform for amplitude and phase 

reconstruction based on the angular spectrum method
 
[16]. 

Figure 4.2.  Experimental apparatus. The excitation beam (green) is shuttered by the 

electromechanical chopper and then focused downward through the sample by the probe-

shared microscope objective (MO). The probe beam (red) is the object arm of the Mach-

Zehnder interferometer and passes upward through the sample, combines with the 

reference beam, and creates the hologram captured by the CCD camera. 
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An integrated optical excitation arm delivers a high powered (up to 5.5 W) 532 

nm cw laser beam to the system.  The beam is steered directly from the source into the 

excitation arm in this case, instead of delivery through an optical fiber, to prevent loss of 

necessary power for these experiments.  The collimated beam is passed through a 10:1 

focal length lens pair to create a much reduced collimated beam radius. An 

electromechanical chopper is positioned at the focus within this lens pair to provide a fast 

opening shutter operation for controlled beam delivery.  A dichroic mirror reflects this 

excitation beam down toward the sample while allowing the probe beam to transmit up 

toward the CCD camera. The excitation beam passes through the shared microscope 

objective which condenses the already thin beam through the sample area.  The 

microscope objectives are chosen to have long effective focal lengths to aid in meeting 

the requirements of the 2D infinite model for thermal lensing described above.  A 

removable red filter is placed just in front of the CCD camera to filter any 532 nm 

excitation light leaking through the dichroic mirror. This “leaky” light, however, can be 

used to find the excitation beam radius and spot location as well as its waist along the 

beam axis by temporarily removing the red filter.  The excitation beam radius, w, is 

defined as the radius at which our Gaussian beam amplitude reduces to e
-2

 of its 

maximum value at the plane of interest.  With the red filter in place, a hologram 

containing complete phase and amplitude information is captured by the CCD camera 

and processed by my LabVIEW software routines to reconstruct the phase images both 

with and without excitation. 
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4.3.1 Thermal behavior of benzyl alcohol 

Here we are working with benzyl alcohol, which has a very low interfacial tension 

when layered with water.  Initial simulations shown above suggest that, using the 

currently described method and apparatus, it is possible to observe and measure the 

deformation of this interface on the order of 10’s of nanometers.  We have performed a 

time series experiment similar to that of section 3.3.2 to verify the thermal behavior of 

benzyl alcohol here.  Figure 4.3 shows the comparison of these measurements with those 

predicted by our model with excellent agreement.  We note that, while the layer of water 

produces a thermal lens, its effects are below the current detection limit at the shortened 

time scales of interest for cw optical radiation pressure detection. 
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Figure 4.3:  Time-resolved thermal lens phase shift measurements (at r = 900 µm) of 

benzyl alcohol with model prediction (solid line).   

 

4.3.2 Detection of optical pressure effect 

While significantly improved imaging time-resolution methods will be developed 

and introduced in the next chapter, the current method provides an adequate experimental 

demonstration of the predictions of the combined model.  Here, water was layered on top 

of benzyl alcohol in a sample cell filled to the top wall (i.e. total physical path length 

remains constant).  The experimental parameters for these liquids are listed in table 4.1.  

As mentioned above, these liquids form a relatively low interfacial tension of 3.5 mN/m.  

A 4 W excitation beam of 500 µm radius was applied by a high speed electromechanical 
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shutter (full beam exposure in <17 µs) while continuous imaging was acquired at 40fps 

(25ms/frame).   

Below, the experimental captures at five time intervals are displayed and 

compared to our model predictions (figure 4.4).  To more accurately represent the smooth 

contour of a surface deformation, the strict geometric theoretical bases described by 

Eq.(4.11) were used to define the parameters of the expected Gaussian deformation 

profile.  The precise time of the first appearance of the structure is not directly known, 

but is approximated at 5 ms, based on the dataset fit to various model points, followed by 

the 25 ms intervals of the capture rate.  The similarities to model predictions demonstrate 

the soundness and feasibility of the proposed method and model.  Not only is there a 

clear change of phase shift direction as expected during the transition of effects, but the 

values of the measured and predicted shifts were in excellent agreement at each 25 ms 

time interval.  
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Table 4.1. Experimental parameters for benzyl alcohol and water layers. 

Parameter Symbol BnOH Water 

Power P 4 W 

Excitation Beam Radius w 500 µm 

Probe Beam Wavelength λ 633 nm 

Path Length l 5.0 mm 

Excitation Duration t 0-80 ms 

Refractive Index (20°C)1 n0 1.540 1.333 

Thermal Conductivity
1
 κ 0.159 W/m/°C 0.600 W/m/°C 

Specific Heat Capacity
1
 c 2.02 J/g/°C 4.181 J/g/°C 

Density
1
 ρ 1.044 g/ml 0.9971 g/ml 

Thermal Time Constant τ 829 ms 434 ms 

Temp. Coefficient of RI
2
 dn/dT -3.5 x 10

-4 
°C-1 -1.0 x 10

-4 
°C-1 

Absorption Coefficient αexp 6.4 x 10
-4

 cm
-1

 6.0 x 10
-4

 cm
-1

 

1
CRC Handbook of Chemistry and Physics, 2008 

2
H. El-Kashef, G.E. Hassan, I. El-Ghazaly, App. Opt. 33, 3540 (1994) 
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Figure 4.4. Phase shift data (scatter) and model predictions (solid) at 5 points in time of 

an excitation event: a) before excitation, b) 5 ms after excitation showing an observable 

optical pressure deformation before the negative thermal effect begins to dominate, and 

c) – e) captures at 25 ms intervals showing the growing and dominating thermal lens 

effect. 

 



66 

 

4.4 Discussion and Conclusion  

Noise levels of our system were again determined by imaging the sample with no 

excitation beam present and taking the standard deviation of this phase profile to indicate 

background noise, in this case, 0.025 rad.  Though noise clearly increases during the 

transition of the observed effects, its level remains below 0.05 rad during the time regime 

of the optical radiation pressure deformation.  It should be noted that phase noise has 

been a feature of constant improvement as our experiments proceed.  As mentioned in the 

previous chapter, noise levels less than 10 mrad have already been achieved with an 

improved interferometer design which will be used in the optical radiation pressure 

experiments described in the next chapter. 

At this point, it may be useful to summarize the success of the above experiments 

in imaging optical and thermal phenomenon by digital holography.  Thermal lensing has 

been measured with such excellent spatial agreement to the existing 2D infinite model 

that photothermal properties of transparent media have been determined with better 

precision and accuracy than traditional methods.  A method has been implemented to 

reduce the excitation duration time of the first time-series frame to between 0 and 25 ms 

followed by 25 ms interval frame captures with camera exposure times of about 80 µs.  

This was done both to test the completeness of the model as well as to reduce the thermal 

effect on the media to a level that the optical pressure effect may be observed without the 

dominating effect of thermal lensing present.  The near perfect match between the time-

resolved model and our phase measurement is very promising for our future interests.  

The results of the above described experiments and our computer simulations suggest that 



67 

 

decoupling thermal and pressure effects and imaging with digital holography can prove 

successful for fluid-fluid interfaces. 

It is expected that our optical pressure techniques can be adapted to the 

characterization of physical properties of biological cell membranes.  The membrane-

fluid interface should be very similar to the fluid-fluid interface currently under 

investigation.  Though it is not certain which excitation source may be most 

advantageous for this future interest, the next chapter will demonstrate some additional 

advantages of a pulsed excitation source.  Specifically, it will be shown that the 

photothermal effects can be eliminated completely from the quantitative phase analysis 

revealing a useful, fine-structured spatiotemporal surface response to an optical pressure 

impulse. 
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CHAPTER 5 

PULSED OPTICAL PRESSURE AND APPLICATION 

 

In the preceding chapters, we have discussed the development of high-precision 

quantitative phase analysis, spatial and temporal analysis of photothermal effects, and 

introduced and observed the photomechanical effects of optical radiation pressure.  We 

will now make use of all that we have discussed thus far to produce a well-defined, high-

precision picture of the surface response to an optical impulse while ensuring the absence 

of a thermal lens.  In fact, the main content of this chapter will be the application of the 

time-resolved, fine-structured three-dimensional mapping of these events for the purpose 

of surface mechanical property measurement. 

We introduce here a noncontact purely optical approach to measuring the 

localized surface properties of an interface within a system using a single optical pressure 

pulse and a time-resolved digital holographic quantitative phase imaging technique to 

track a propagating nanometric capillary disturbance.  We demonstrate the method’s 

ability to measure the surface energy of deionized water, methanol, and chemical 

monolayers formed by surfactants with good agreement to published values.  The 

developments described in this chapter boast immediate application to static and dynamic 

systems and near-future applications for living biological cell membranes as will be 

discussed at the end of this chapter. 
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5.1 Introduction 

Interfacial analysis is a valuable tool in areas of soft matter physics, chemistry, 

and biology.  In fact, many surface energy measurement techniques have been employed 

for their varying degrees of improvement in accuracy, precision, or adaptability.  Most of 

these tend to be invasive to the interface and suffer from an inability to make 

measurements within an intact system.  Droplet methods [1], such as the popular pendant 

drop method [2], require a small sample to be removed from the system and tested 

separately, while probing methods [3], including the widely used Wilhelmy plate method 

[4], require a full contact probe through or on the interface of interest.  Continuous wave 

(cw) optical manipulation techniques, including trapping [5] and radiation pressure [6], 

have grown popular for their noncontact nature and precise control.  Optical trapping 

methods, however, require a tightly focused beam which may have unwanted effects on 

the media and often use microspheres as probes in contact with the interface.  The loosely 

focused cw optical pressure techniques overcome some of these drawbacks, however, 

observation of the resulting weak deformation effect may be limited to very low surface 

tension applications, such as phase separating microemulsions [7], and imaging that relies 

on surface lensing or phase modulation, both of which are also affected by the imminent 

thermal effects as has been shown even for very transparent media applications [8-10].  

A frequency-regulated optical pressure approach which induces capillary waves 

on the surface of interest has been shown to provide a good measure of surface tension 

[11].  The method makes use of a characteristic frequency which is related to the surface 

tension of the interface.  This frequency scanning, however, requires the repeated 
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excitation of the sample and, as mentioned in the cited reference, is limited by the build-

up of thermal effects. 

The approach that we introduce here makes use of the dependence of the capillary 

wave velocity on the surface energy of the interface.  We induce a capillary wave with a 

single laser pulse and the propagating wavefront of only a few nanometers in amplitude is 

easily tracked by our time-resolved digital holographic quantitative phase microscopy 

(DH-QPM) imaging apparatus (figure 5.1).  The result is a complete spatiotemporal 

mapping of the surface response to a purely optical impulse (figure 5.2 and 5.3).  

Furthermore, due to the axial symmetry of the disturbance, an azimuthal average is used 

to improve image and tracking precision [10].  The short (5 ns) single pulse does not 

produce a measurable thermal effect compared to the physical deformation and there is 

no further excitation in our proposed process. 
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Figure 5.1.  Experimental apparatus. (a) The cw imaging beam, red, is condensed 

through the acousto-optic modulator, AOM, then collimated through the iris (only while 

the AOM is triggered). The collimated beam enters the Mach-Zehnder interferometer 

where the first 50/50 beam splitter, BS, separates the beam into object and reference 

arms, with matching objective lenses, and the second BS recombines the two for the CCD 

camera. The pulsed excitation beam, green, is condensed and collimated by a 10:1 focal 

length lens pair. A dichroic mirror, DM, transmits the imaging beam while reflecting the 

excitation beam down toward the sample. The shared 5 cm focal length objective lens 

loosely focuses the excitation beam onto the interface of interest. (b) A magnified view of 

the dual-beam sample region (dashed area of (a)). 
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Figure 5.2.  Time-dependent surface response to optical impulse for DI water. (a) Raw 

phase images (1.0 x 1.0 mm) of selected time steps and (b) corresponding azimuthal 

averaged 3D reconstruction (1.0 mm x 1.0 mm x 150 nm). 
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Figure 5.3.  Time-series data.  (a) Spatiotemporal plot of a complete time series. (b) 

Height profiles for selected time steps during deformation and (c) relaxation. 
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5.2 Theory 

The initial deformation is a direct result of the conservation of photon momentum 

[12] as the photon encounters a boundary of differing refractive indices [7, 13, 14] 

described by, 

 1 2 1ˆ ˆ
n h n h n h

z T R z p
c c c

ν ν ν = − + 
 

�

 

where 1n  and 2n  are the refractive indices of the first and second media, respectively, T  

and R  are the transmittance and reflectance, /h cν  is the photon’s momentum in vacuum 

and the final term, p
�

 represents the exchange of momentum with the interface.  By 

solving for the simplified case of a flat interface with normal incident photons on 

transparent media, we have for the momentum exchange, 
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It is easy to see from this relation that the direction of momentum transfer, and therefore 

the deformation of the interface, will always point in the direction of the smaller 

refractive index regardless of the direction of beam propagation.  The resulting phase 

shift will therefore always be positive (longer optical path length), which is opposite that 

of the thermal lensing effect [9], making the two easily distinguishable by DH-QPM [15], 

though the current method of pulsed excitation eliminates this necessity [16].   The 

observed phase profile is related to physical surface deformation by, 

 ( )2 1

2
h n n

π
φ

λ
= −  
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where λ  is the wavelength of the imaging beam and h  is the height profile of the 

deformation field including a capillary wavefront propagating from the source. 

The dispersion relation for capillary waves at the interface of two media is 

described by [17], 

 2 2

a

σκ
ω κ

ρ ρ
 

=  + 
 

where ρ  and aρ  are the densities of the lower and upper fluids, respectively, κ  is the 

angular wavenumber, and σ  represents the surface tension between the fluids.  For the 

present case of the air-liquid interface aρ  can be dropped since aρ ρ<<  and by 

substituting the phase velocity, /v ω κ= , the relation can be written succinctly, 

 v
σκ
ρ

= . 

 In our experiments, we track the single-pulse capillary wavefront position as a 

function of time (figure 5.4(a-d)) to determine a velocity.  We acknowledge at this point 

that the determination of a wavenumber is not straightforward for a single propagating 

pulse.  The wavenumber for a repeating waveform is determined by the distance between 

corresponding points of two adjacent cycles.  Since a single pulse is not amenable to this 

definition, we determine our disturbance wavenumber when the source deformation 

reaches its maximum height.  At this time step, the half-wavelength, and therefore the 

wavenumber, can be determined by the horizontal distance from the center to the minima 

of the deformation.  This method of determining our single pulse wavenumber has been 
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sustained empirically thus far.  Therefore, we shift 0t =  to this time step and, by 

integrating with respect to time, we can write the linear expression 

 ( )r t t
σκ π
ρ κ

= +  

where the second term on the right is the constant of integration defined by our initial 

boundary condition.  The slope of this relation yields the surface tension for our given 

wavenumber and density.   Since this input wavenumber may vary from one experiment 

to the next and the density value will change for different interfaces, the relation of 

( )( ) / /r t π κ ρ κ−  vs. t  can be plotted for the purpose of universal comparison as 

shown in figure 5.4(e).  The square of the slope of this relation is then equal directly to 

the surface energy of the interface.  We note here that it is only necessary to create an 

observable capillary disturbance in order to make use of our method.  It is not necessary 

to have additional knowledge of the properties that may describe the deformation itself. 
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Figure 5.4.  Capillary wave front velocity. Position vs. time plots of data and linear fits 

for: (a) DI water, (b) methanol, (c) 3 mM SDS in DI water, and (d) 6 mM SDS in DI 

water.  (e) Comparison plot of (r(t)-π/κ)√(ρ/κ) vs. t for each sample type where the square 

of each slope is equal to the surface tension. 
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5.3 Experiments 

The diagram of the experimental apparatus is shown in figure 5.1 with a close-up 

view of the dual-beam sample region.  A version of the improved Mach-Zehnder 

interferometer design introduced in section 3.3.3 is used to create a hologram of the 

sample using low power (<1mW) 633-nm laser light.  The imaging beam arrives 

collimated at a beam splitter that transmits half the beam into the reference arm and 

reflects half the beam into the object arm of the interferometer.  The beams each follow a 

similar path, through matching singlet objective lenses, before recombining by another 

beam splitter.  The interference of the phase-modulated object beam with the reference 

beam creates the hologram and is recorded by a digital CCD camera placed atop the 

setup.  The holograms are processed by our LabVIEW personal computer platform for 

amplitude and phase reconstruction based on the angular spectrum method [18]. 

An integrated optical excitation arm delivers a 532-nm, 5 ns pulse to the system. 

The pulse energy is adjustable from 0-25 mJ with a built in attenuator.  For all present 

experiments, the output was set to ~5 mJ.  The pulse-beam is passed through a 10:1 focal 

length lens pair to create a much reduced beam radius. A dichroic mirror reflects this 

excitation beam down toward the sample while allowing the probe beam to transmit up 

toward the CCD camera. The excitation beam passes through the shared objective lens 

which loosely focuses the already narrowed beam through the sample area.  The 

objectives are chosen to have long effective focal lengths to aid in maintaining constant 

beam radius at the interface (~100µm presently).  A removable red bandpass filter is 
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placed just in front of the CCD camera to filter out any 532-nm excitation light leaking 

through the dichroic mirror. 

The sample consists of a partially liquid-filled modified glass cuvette 10 mm by 

40 mm by 45 mm with a sealable lid.  The cuvette is placed on the sample stage on its 

side oriented with a 10 mm path length.  The liquid level in the cuvette is filled to a 

height of 5 mm in this orientation.  The modified cuvette has a small (~6 mm) hole 

drilled through the upper glass surface providing an unimpeded excitation beam delivery.  

All general phase aberration, including wavefront curvature mismatch, can be easily 

compensated for by storing a background phase image prior to excitation and subtracting 

this from the excited images.  Additional compensation for the inherent dynamic nature 

of the free liquid surface is also easily achieved as needed with DH-QPM. 

A digital delay generator controls precise timing of both excitation and imaging.  

Prior to delivery to the system, the imaging beam is condensed through an acousto-optic 

modulator (AOM) which, during triggering, diffracts the imaging beam through a 

collimating lens and iris.  The pulse delay generator sends a 5 µs square pulse signal to 

this AOM shutter system at specified delay times relative to the excitation pulse.  This 

delivery method produces the short exposure images required for this study without 

sacrificing phase quality as would be likely if a pulsed imaging beam were used instead. 

We have employed here a time-resolved imaging technique which requires each 

time step to be the result of a separate optical impulse followed by an appropriately 

delayed short (5 µs) camera exposure.  This introduces some uncertainty due to variation 

in the output energy of each pulse.  The use of a high-speed camera or alternative rapid 
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imaging method may eliminate this uncertainty; however, the demonstration of our 

proposed technique’s capabilities is affected little by this. 

First, we characterized our technique for known substances at both high and low 

surface energy standards.  For the high range, we chose the deionized (DI) water-air 

interface as the expected value is well known to be 72.8 mN/m at 20°C [19].  Our 

measured surface energy for this interface was 72.9±.6 mN/m where the tolerance here 

represents the standard deviation of repeated trials.  For the low range standard, we chose 

the methanol-air interface with a previously reported surface energy of 22.6 – 22.9 mN/m 

at 20°C [19, 20] and we have measured this to be 23.8±.3 mN/m.   

Some differences in these values may be expected due to the noncontact nature of 

our approach versus the typical probe techniques traditionally used for this measurement.  

For now, we will assume that the above measurements are reasonably close to expected 

values and continue with the application of our method to chemical monolayers.  Again, 

we have chosen a well-known surfactant, sodium dodecyl sulfate (SDS), whose effect on 

the water-air interface has been studied previously [21, 22].  An SDS molecule contains a 

hydrophilic head group and a hydrophobic tail.  As such, when molecules of SDS are 

added to water they have an affinity for a boundary where the tail can point away from 

the polar liquid.  It is this behavior that gives SDS its surface energy reducing effect as it 

reduces the strength of attraction of the surface water molecules toward one another.  

We measured the surface energy at the solution-air interfaces of 3 mM and 6 mM 

SDS concentrations in DI water.  Our results of 50.1 mN/m and 38.9 mN/m, respectively, 

are within the expected range for typical stock solutions at these concentrations [21].  It 

can be noted here that a variation around measured values for such mixtures are discussed 
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at length in the cited reference.  It is beyond the scope of our study to address this; 

however, this dynamic nature of monolayers presents a favorable application for our 

method as will be discussed shortly. 

 

5.4 Discussion and Conclusion 

There are several advantages inherent to the method described here, not the least 

of which is the freedom of choices for excitation and imaging sources.  Since the optical 

pressure effect is entirely dependent on the difference in refractive index across the 

interface, the choice of excitation wavelength can be freely changed to benefit the 

application without cost to the mode of operation.  Furthermore, since the imaging 

method is entirely phase related, the choice of imaging wavelength is also free to depend 

upon the application at hand or the availability of resources.  In either case, the best 

choices would be the most transparent to the system to avoid any chance of unwanted 

thermal or scattering effects, but in most cases a broad selection of sources will perform 

the task with little consequence. 

The use of time-resolved DH-QPM has some additional inherent advantages and 

adaptations, as well.  Mainly, through careful construction, DH-QPM has been shown to 

measure optical path differences in the sub-nanometer range [10] making it well-suited 

for observation of very small physical disturbances qualifying the use of mild excitation 

pulses.  Since DH-QPM is a 3D volumetric imaging method [23], it is also possible to 

observe the multiple interfacial planes of a complex, layered system with a single time 

series of holograms using the same excitation pulse.  Furthermore, because the basis of 

the measurement is the capillary wavefront velocity, the temporal resolution requirement 
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may be less stringent at lower surface energies suggesting this method to be well adapted 

for such applications. 

Surface tension is traditionally thought of as a characteristic property of an entire 

interface.  As alluded to earlier, particularly in the case of monolayers, the surface energy 

can be quite dynamic and likely varies from region to region of a given surface based on 

localized conditions.  In many cases, it may be of interest to monitor these local values of 

surface energy rather than attempting to obtain a single value for the surface as a whole.  

The technique presented here is adapted to this kind of localized measurement and can be 

adjusted in scale to match the region of interest for a given application simply by choice 

of lenses.  Where measurements like this are intended, it would certainly be of high 

importance to use a noncontact method such as that introduced here. 

The surface energy of biological cell membranes and systems has long been a 

topic of interest and studies continue to emerge as modern techniques prevail [24-27].  Of 

particular need are techniques that can perform this analysis in living cells as they 

undergo natural processes and life cycle behavior.  The noninvasiveness of the applied 

method is therefore of utmost importance.  Several optical approaches have been 

practiced including stretching of the cell [28] or optical tweezing techniques which 

involve the use of microspheres attached to or inserted inside of the cellular membrane 

[29, 30].  The use of optical forces on these membranes without the need for stretching or 

foreign microspheres in contact would be a distinct improvement.  With the advantages 

described in the preceding paragraphs, our noncontact single optical pressure pulse 

method could be an excellent candidate for such applications. 
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CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

 

Our research has successfully made use of the advantages of digital holography 

and, more specifically, the angular spectrum method to observe and measure structures 

which are otherwise unobservable by standard optical microscopy.  We have incorporated 

specialized techniques and fabricated unique apparatus to suit the growing demands of 

our research goals.  The observation of the individual phase effects of both photothermal 

and optical radiation pressure phenomena have required mathematical modeling and 

computer simulation to define the necessary parameters for the fabrication of the 

apparatus and experimental design.  We have shown that the effects can be successfully 

decoupled and precisely measured independently and have found useful applications for 

our work as it has progressed.  Additionally, as our research evolved, so did the quality of 

our imaging apparatus and software processing.  In this chapter we will summarize the 

main conclusions of the topics described in this dissertation. 

 

6.1 Summary of conclusions 

 The importance of quantitative phase imaging and the advantages of the angular 

spectrum method of digital holography were made apparent in chapter 2.  The purely 

phase nature of the thermal lens and the nanometric surface disturbances of the optical 
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pressure effect render direct optical microscopy methods useless.  Digital holographic 

quantitative phase microscopy (DH-QPM) was necessary for the precise measurement 

and therefore the real-world applications of our results.  Since the formulation of the 

angular spectrum method (ASM) is based on the fundamental properties of the Fourier 

transform, there is no need to impose boundary conditions as with comparative methods.  

In addition, there are advantages that have important consequences when the integrals are 

discretized for numerical diffraction such as; the diffraction is constructed from well-

behaved plane waves instead of spherical waves with point source singularities, and there 

is no requirement for the approximation factor, r z≈ , as with the Fresnel transform 

method.  Combining these advantages with the ease of angular spectrum filtering and 

phase aberration compensation made DH-QPM by ASM an ideal choice for the research 

topics investigated in this dissertation. 

 In order to study the effect of optical radiation pressure on the surface of a fluid, it 

was first very important to fully investigate the thermal effects from optical interaction.  

The use of quantitative phase imaging as the method of detection means sensitivity to 

both dimensional changes and optical density changes.  In chapter 3, the thermal lens was 

described and mapped both spatially and temporally and the results were used as a 

sensitive tool for the measurement of the absorption coefficient of transparent media.  

Although we have shown our initial approach to be an improvement in both accuracy and 

precision over previously existing methods, our apparatus and process have undergone 

continued improvement during the course of our thermal lens investigations.  In fact, 

measurement of thermal lensing can be used as a standard to demonstrate our 

improvements in parameter measurement precision as shown in table 6.1.  These 
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improvements became increasingly important, of course, in the optical pressure 

deformation experiments that followed. 

 

Table 6.1.  Comparison of improved measurement precision. 

Parameter Previous 

Reference[1]
1,2 

Initial DH-

QPM
1 

Improved 

Apparatus
3 

Azimuthal 

Averaging
3,4 

Phase (mrad) 200 120 10 2 

Temperature (K) 0.012 0.0072 0.0005 0.0001 

Refractive Index 4 x 10
-6

 2.4 x 10
-6

 1.7 x 10
-7

 3.4 x 10
-8

 

Optical Thickness (nm) 20 12 0.8 0.2 

Absorption Coef. (cm
-1
) 5 x 10

-5 
3 x 10

-5 
1 x 10

-5 
2 x 10

-6
 

1
Values taken from methanol study. 

2
Values based on claimed tolerance from reference. 

3
Values taken from benzyl alcohol study. 

4
Radial symmetry required and actual precision dependent on original system noise level. 

 

At this point, we had demonstrated that our DH-QPM method could be 

immediately useful as a valuable tool in various analytical chemistry applications 

requiring photothermal property measurement with high sensitivity [2-4].  This was not 

our intended ultimate goal, but actually a consequence of the required steps in our pursuit 

of developing a measurement technique for the nanometric deformation caused by optical 

radiation pressure from photon momentum exchange across fluid interfaces.   

In chapter 4, we derived a combined model of these two effects which differ not 

only greatly in time-scale, but also oppositely in phase signal direction making DH-QPM 

ideal for their very distinguishable detection.  Computer simulations were then performed 

in order to determine the experimental parameters required to observe them separately.  
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We then modified our apparatus and processing routine to accommodate the requirements 

predicted by simulations.  A method was implemented to reduce the excitation duration 

time of the first time-series frame to between 0 and 25 ms, where it was predicted that a 

deformation could be observed due to the optical pressure on the interface.  Subsequent 

frames were captured at the camera rate of 25 ms intervals with camera exposure times of 

about 80 µs, showing the evolution of the phase signal in time as thermal lensing reversed 

the phase signal and grew to dominate the interaction.  The nearly perfect match between 

our predictions and our phase measurements demonstrated the completeness of the 

combined model as well as the ability to use shortened time scales to observe optical 

pressure deformations before the dominating effects of thermal lensing. This suggested 

that completely decoupling these effects would be possible by developing a method of 

controlled DH-QPM capture at much shorter time scales. 

In chapter 5, we demonstrated not only a method for completely decoupling the 

photomechanical from the photothermal effects discussed earlier, but developed a useful 

and unique noncontact method for the application of measuring mechanical properties of 

surfaces of soft matter.  We introduced a purely optical approach to measuring the 

localized surface energy of an interface within a system using a single, 5 ns, optical 

pressure pulse and a time-resolved digital holographic quantitative phase imaging 

technique to track a propagating nanometric capillary disturbance.  The 5 ns pulse does 

not produce a discernible thermal phase signature and, since there is no additional optical 

excitation, the time series of data to follow contains only the time-dependent signal due 

to the mechanical disturbance at the surface.  The method was used to measure the 

surface energy of deionized water, methanol, and chemical monolayers formed by 



93 
 

surfactants with good agreement to published values as summarized here in table 6.2.  

Due to the noncontact nature of our approach, it is likely that differences in our 

measurements are due to improved accuracy over the previously reported methods which 

require the use of an invasive probe.  In fact, this is the most significant advantage that 

our method has over these traditional techniques. 

 

Table 6.2.  Experimental results for surface tension (mN/m). 

 Published Contact Probe 

Methods[5-7]
 

Noncontact DH-QPM 

Method 

DI Water 72.8 72.9 

Methanol 22.6-22.9 23.8 

3 mM SDS 47-57
* 

50.1 

6 mM SDS 35-45
* 

38.9 

*
Range of values taken from figure 7 of Ref[7]. 

 

 Several additional advantages of the approach in chapter 5 were described.  Since 

both the imaging and excitation mechanisms are grossly independent of source 

wavelength, there is a large variety of options for these sources increasing adaptability to 

other applications.  We have demonstrated that DH-QPM is capable of subnanometer 

optical thickness precision making the deformation structures easily visible even with the 

use of mild excitation energy.  Also, the true 3D volumetric imaging capabilities make it 

easy to propagate to different planes of focus or possibly, under certain circumstances, 

observe multiple interfacial planes of a more complex layered system with the same time 

series of holograms.   For applications involving very low surface tension measurement, 
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our approach should be particularly well-suited since the capillary wavefront velocity 

will notably decrease and the observable deformation will occur with greater ease, thus 

putting, all around, less restriction on the experimental design.  Furthermore, our 

approach measures the effective surface tension of adjustable regions of interest rather 

than treating the surface as a whole, which may be of high importance for many 

applications. 

 

6.2 Future Work 

There has long been an interest in the surface energy of biological cell membranes 

and studies have continued to emerge in recent years [8-11].  Of particular need are 

techniques that can perform this analysis, with minimal invasiveness, in living cells as 

they undergo natural processes and life cycle behavior.  With this in mind, optical 

approaches have become quite prominent and recently include optical stretching of the 

cell [12] or optical tweezing techniques which involve the use of microspheres attached 

to or inserted inside of the cellular membrane [13, 14].  The use of optical forces on these 

membranes without the need for stretching or foreign microspheres would be a distinct 

improvement.  We believe our approach to sensing and measurement involving purely 

optical nanometric manipulation and imaging has important advantages and may be 

adapted to the study of biological cell membranes. 

 The approach proposed here is based on the single-pulse optical pressure method 

described in chapter 5.  In this approach, diagramed in figure 6.1, a tightly focused 

optical radiation beam is applied to a localized portion of the cell membrane.  This may 

produce an observable deformation followed by a capillary wave disturbance on the 
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membrane surface which may be tracked by time-resolved DH-QPM.  The surface 

energy can then be determined just as described for the chemical monolayers in chapter 

5.  If scaled properly, this procedure could be applied to various regions of interest 

around the cell body for a useful profile of the distribution of energies if desired. 

 

Figure 6.1.  Application to biological cell membrane. 

 

 This application does present several restrictions and barriers to overcome in 

order to be feasible in practice.  Though the technique described can, in theory, be scaled 

down to accommodate smaller regions of interest, the cell should be large enough that 

this can be reasonably accomplished.  Also, the cell must be transparent to the imaging 

light and to the excitation light, so many cellular species may impose high limitations on 

these sources.  Even if the cell is mostly transparent, the state of the cell may alter 

availability of the transparent regions for the experiment, for example, by shifting non-
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transparent organelles or particulates around.  Additionally, the cell and its surface must 

remain free of any unwanted capillary vibrations that may occur on similar time scales to 

those induced from the excitation source.  While our experiments performed in chapter 5 

were time-resolved by a technique that did not require a high-speed camera, the motion 

of certain cell species may demand this expensive adaptation.  Finally, even if a cell is 

highly transparent to the selected excitation source, it may be possible to cause damage to 

the cell which prevents completion of the measurement, especially if the spot-size has 

been scaled down significantly, such as to accommodate the requirements of certain cell 

species. 

 Regardless of the possible limitations that may be imposed, we believe the 

application described here is worth exploring.  There are many variations available for 

the method described and it is likely that it can be adapted to achieve the proposed goals 

for many cell species.  In fact, even a few successful representative cell species could 

greatly increase the existing knowledge of the relationships between cellular membrane 

surface energy and environmental, behavioral, or developmental factors. 

 

6.3 References 

1. Cabrera, H., Marcano, A., and Castellanos, Y., “Absorption coefficient of nearly 

transparent liquids measured using thermal lens spectrometry,” Condensed Matter 

Physics, 9, No. 2(46), 385-389 (2006). 

2. Pegau, W.S., Gray, D., and Zaneveld, J.R.V., “Absorption and attenuation of visible 

and near-infrared light in water: dependence on temperature and salinity,” Appl. Opt., 

36(24), 6035 (1997). 



97 
 

3. Babin, M., Stramski, D., Ferrari, G.M., Claustre, H., Bricaud, A., Obolensky, G., and 

Hoepffner, N., “Variations in the light absorption coefficients of phytoplankton, 

nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. 

Geophys. Res., 108(C7), 3211 (2003). 

4. Colcombe, S.M., Lowe, R. D., Snook, R.D., “Thermal lens investigation of the 

temperature dependence of the refractive index of aqueous electrolyte solutions,” 

Anal. Chim. Acta, 356, 277 (1997). 

5. Vazquez, G., Alvarez, E., and Navaza, J. M., “Surface Tension of Alcohol Water + 

Water from 20 to 50 .degree.C,” J. Chem. Eng. Data 40, 611-614 (1995). 

6. Součková, M., Klomfar, J., and Pátek, J., “Measurement and Correlation of the 

Surface Tension−Temperature Relation for Methanol,” J. Chem. Eng. Data 53, 2233-

2236 (2008). 

7. Mysels, K. J., “Surface tension of solutions of pure sodium dodecyl sulfate,” 

Langmuir 2, 423-428 (1986). 

8. Hochmuth, R. M., “Micropipette aspiration of living cells,” J. Biomech. 33, 15-22 

(2000). 

9. Spelt, J., Absolom, D., Zingg, W., van Oss, C., and Neumann, A., “Determination of 

the surface tension of biological cells using the freezing front technique,” Cell 

Biochem. Biophys. 4, 117-131 (1982). 

10. Brodland, G. W., Yang, J., and Sweny, J., “Cellular interfacial and surface tensions 

determined from aggregate compression tests using a finite element model,” HFSP J. 

1, 108 (2009). 



98 

 

11. David, R., Ninomiya, H., Winklbauer, R., and Neumann, A. W., “Tissue surface 

tension measurement by rigorous axisymmetric drop shape analysis,” Colloid Surface 

B 72, 236 (2009). 

12. Guck, J., Ananthakrishnan, R., Mahmood, H., Moon, T. J., Cunningham, C. C., and 

Käs, J., “The Optical Stretcher: A Novel Laser Tool to Micromanipulate Cells,” 

Biophys. J. 81, 767-784 (2001). 

13. Dai, J. and Sheetz, M. P., “Mechanical properties of neuronal growth cone 

membranes studied by tether formation with laser optical tweezers,” Biophys. J. 68, 

988-996 (1995). 

14. Hénon, S., Lenormand, G., Richert, A., and Gallet, F., “A New Determination of the 

Shear Modulus of the Human Erythrocyte Membrane Using Optical Tweezers,” 

Biophys. J. 76, 1145-1151 (1999). 

 



 

99 

 

 

 

 

BIBLIOGRAPHY 

 

Kim, M. K. Digital Holographic Microscopy: Principles, Techniques, and Applications, 

1
st
 edn,  (Springer, 2011). 

 

Schnars, U. and Jueptner, W., Digital Holography, (Springer Verlag, 2005). 

 

Hecht, E., Optics, 4
th
 edn,  (Addison Wesley, 2002). 

 

Goodman, J. W., Introduction to Fourier Optics, 2
nd
 edn, (McGraw-Hill, 1996). 

 

Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, (Pergamon Press, 1959). 

 

Brash, J. L. and Wojciechowski, P. W., Interfacial phenomena and bioproducts, (Marcel 

Dekker, 1996). 

 

Bender, M., Interfacial phenomena in biological systems, (Marcel Dekker, 1991). 

 

Myers, D., Surfaces, interfaces, and colloids: principles and applications, 2
nd
 edn, 

(Wiley-VCH, 1999). 



 

100 

 

 

 

 

APPENDICES 



101 
 

 

 

 

APPENDIX A 

APPARATUS PHOTOGRAPHS 

 

 

Figure A.1.  Early apparatus.  Left:  Complete assembled apparatus with CW excitation 

beam delivered by fiber optic from the left and imaging (reference and object) beams 

delivered separately from the right by 50/50 beam-splitting fiber optic from single HeNe 

source.  Right:  Mach-Zehnder interferometer with other components removed for clarity.   
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Figure A.2.  Improved apparatus.  Compact, low-noise Mach-Zehnder interferometer for 

high-precision phase imaging (shown on the right with some components removed for 

clarity).  Single imaging beam enters lower beam splitter from the left and excitation arm 

enters at the dichroic mirror from the back. 
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Figure A.3.  Acousto-Optic Modulator (AOM) shutter system.  Imaging beam enters 

from HeNe source through fiber optic from left, is condensed through AOM and 

diffracted (when triggered by driver) through iris and collimating lens exiting to the right. 
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Figure A.4.  Pulsed optical pressure, time resolved DH-QPM apparatus complete.  
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APPENDIX B 

COMPUTER PROGRAMS 

 

 Displayed here are some of the important LabVIEW and MATLAB software 

developments created for the purpose of this research. 

 

 
 

 

Figure B.1.  Front panel and block diagram of the Fourier Transform VI. 
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Figure B.2.  Front panel and block diagram of the sub-VI for filtered angular spectrum 

numerical diffraction. 
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Figure B.3.  Front panel of the sub-VI for phase correction routines. 
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Figure B.4.  Block diagram for wavefront curvature mismatch correction. 

 

 

Figure B.5.  Block diagram for general background phase aberration compensation. 
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Figure B.6.  Block diagram for phase level stabilization. 

 

 

Figure B.7.  Block diagram for phase tilt correction. 
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MATLAB program “360QuadSymm.m” written to perform azimuthal averaging of 

axisymmetric phase image structures and to check the symmetry in four quadrants: 

 
%Written as LabVIEW MatLab Script, inputs: I, dx, dy, ROI, 
Xc, Yc 
%Compares symmetries in quadrants of I 
rawmax=max(max(I)); rawmin=min(min(I)); 
rawr=(rawmax-rawmin); 
%zr=1.58; 
scale=1;          %=zr/rawr; 
Irad=I*scale; 
xc=round(Xc/dx); 
yc=round(Yc/dy); 
Itrim=Irad(yc-round(ROI/dy):yc+round(ROI/dy),xc-
round(ROI/dx):xc+round(ROI/dx)); 
Radialavg=zeros(1,ROI); 
for n=0:round(ROI) 
    [X,Y]=pol2cart(-.25*pi:pi/100:.25*pi,round(n/dx)); 
    X=round(X)+round(ROI/dx); Y=round(Y)+round(ROI/dy); 
Radial=zeros(size(X)); 
    for i=1:size(X,2) 
        Radial(i)=Itrim(Y(i)+1,X(i)+1); 
    end 
    m=n+1; Radialavg1(m)=mean(Radial); 
end 
for n=0:round(ROI) 
    [X,Y]=pol2cart(.75*pi:pi/100:1.25*pi,round(n/dx)); 
    X=round(X)+round(ROI/dx); Y=round(Y)+round(ROI/dy); 
Radial=zeros(size(X)); 
    for i=1:size(X,2) 
        Radial(i)=Itrim(Y(i)+1,X(i)+1); 
    end 
    m=n+1; Radialavg2(m)=mean(Radial); 
end 
for n=0:round(ROI) 
    [X,Y]=pol2cart(.25*pi:pi/100:75*pi,round(n/dx)); 
    X=round(X)+round(ROI/dx); Y=round(Y)+round(ROI/dy); 
Radial=zeros(size(X)); 
    for i=1:size(X,2) 
        Radial(i)=Itrim(Y(i)+1,X(i)+1); 
    end 
    m=n+1; Radialavg3(m)=mean(Radial); 
end 
for n=0:round(ROI) 



111 

 

    [X,Y]=pol2cart(1.25*pi:pi/100:1.75*pi,round(n/dx)); 
    X=round(X)+round(ROI/dx); Y=round(Y)+round(ROI/dy); 
Radial=zeros(size(X)); 
    for i=1:size(X,2) 
        Radial(i)=Itrim(Y(i)+1,X(i)+1); 
    end 
    m=n+1; Radialavg4(m)=mean(Radial); 
end 
RadialavgH = (Radialavg1+Radialavg2)/2; 
RadialavgV = (Radialavg3+Radialavg4)/2; 
Radialavg360 = (RadialavgH+RadialavgV)/2; 
figure('position',[200,50,600,600]),plot(RadialavgH-
min(RadialavgH)), title('Horizontal') 
figure('position',[300,50,600,600]),plot(RadialavgV-
min(RadialavgV)), tital('Vertical') 
figure('position',[400,50,600,600]),plot(Radialavg360-
min(Radialavg360)), tital('360 Degree') 
figure('position',[500,50,600,600]) 
subplot(2,2,2);plot(Radialavg1-min(Radialavg1)), 
title('Right') 
subplot(2,2,1);plot(Radialavg2-min(Radialavg2)), 
title('Left') 
subplot(2,2,3);plot(Radialavg3-min(Radialavg3)), 
title('Top') 
subplot(2,2,4);plot(Radialavg4-min(Radialavg4)), 
title('Bottom') 
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Compact version of above scripted into LabVIEW vi: 
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MATLAB program “PlotSeriesFigDataMODS.m” written to automate analysis of 

the output cross-sectional time-series data from optical pressure impulse 

experiments: 

 
%Get data from time series .fig files, mesh plot all, track 
and plot 
%propagating wavefront, and use velocity to solve for 
surface tension 
clear; 
d=997; 
lamda=633e-9; 
n1=1; 
n2=1.333; 
t=[10:10:90 100:50:500]; 
path='P:\CAS-PHY Kim Lab\AAA KimLab Folders\__folder 2009 - 
Dave C\__data & notes - Dave\Optical Pressure\data 2012-02-
24\DI figs\di'; 
i=1; 
for n=t 
    if n<100 
        num=num2str(n); 
        file=strcat(path,'0',num,'.fig'); 
    else 
        num=num2str(n); 
        file=strcat(path,num,'v.fig'); 
    end 
    s=hgload(file); 
    h = findobj(s,'Type','line'); 
    z(i,:)=get(h,'ydata'); 
    x=get(h,'xdata')-1; 
    close(s) 
    z(i,:)=z(i,:)-mean(z(i,size(z,2)-100:size(z,2))); 
    i=i+1; 
end 
trim=size(z,2); 
figure(1); 
surf(x(1:trim),t,z(:,1:trim)),colormap(jet),xlabel('Radial 
Position (\mum)'),ylabel('Time (\mus)'),zlabel('Phase Shift 
(rad)'),title('Phase Response') 
camorbit(120,20);shading flat; 
  
%%%%%%Determining Surface Tension%%%%%% 
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[pk pkia]=max(z(:,1)); 
pki=pkia; 
fin=size(t,2); 
[~,pos]=min(transpose(z(pki:fin,1:800))); 
%pos(1)=225;  %%Enter a value in for input wavelength only 
if check (fig3) indicates the need 
linearCoef = polyfit(t(pki:fin),pos,1); 
vel=linearCoef(1); 
wn=pi/(pos(1)*1e-6); 
s=vel^2*d/wn*1e3; 
linearFit = polyval(linearCoef,t(pki:fin)); 
figure(2); 
plot(t(pki:fin),pos,'s',t(pki:fin),linearFit,'r-
'),xlabel('Time(\mus)'),ylabel('Position 
(\mum)'),title({['Density = ',num2str(d),' kg/m^3, 
','\kappa = ',num2str(wn),' m^-^1, ','Velocity = ', 
num2str(vel),' m/s'],['Peak@ ',num2str(t(pki)),' \mus',', 
Surface tension = ',num2str(s),' mN/m']}) 
  
%%%Checking wn selection 
figure(3) 
plot(x(1:400),z(pki,1:400)),xlabel('Radial Position (um)'), 
ylabel('Phase Shift (rad)'),title(['Autoselected Wavelength 
= ',num2str(pos(1)),' \mum']) 
  
%%%%%%%Alternative Relationship%%%%%%%%%% 
  
posv=pos*1e-6/sqrt(wn); 
linearCoef2 = polyfit(t(pki:fin)*1e-6,posv,1); 
altm=linearCoef2(1); 
  
s2=d*altm^2; 
linearFit2 = polyval(linearCoef2,t(pki:fin)*1e-6); 
figure(4); 
plot(t(pki:fin),posv,'s',t(pki:fin),linearFit2,'r-
'),xlabel('Time(\mus)'),ylabel('Position/\surd\kappa 
(m^3^/^2)'),title({['Density = ',num2str(d),' kg/m^3, 
','\kappa = ',num2str(wn),' m^-^1, ','Slope = ', 
num2str(altm),' m^3^/^2s^-^1'],['Peak@ ',num2str(t(pki)),' 
\mus',', Surface tension = ',num2str(s2*1e3),' mN/m']}) 
  
%%%%%%%Additional Displays%%%%%%%%%%%%%%%%% 
%%Overlapping 2D time series 
dfact=lamda/(2*pi*(n2-n1)); 
prange=[1:pki]; 
figure(5) 
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plot(x(1:trim),z(prange,1:trim)*dfact*1e9),xlabel('Radial 
Position (\mum)'), ylabel('Z Position (nm)'), 
legend(num2str(transpose(t(prange)))) 
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MATLAB program “3Dbuild.m” written to reconstruct 3D representations of fully 

treated optical impulse surface response data: 

 
%%%% Run PlotSeriesFigData.m first to build matrices z,t, 
and x or import 
%%%% previously built matrices stored in builddata.mat 
for i=1:20 
    rho=z(i,:); 
    sizes=size(rho,2); 
    [theta,rr]=cart2pol(sizes,sizes); 
    padrho=padarray(rho,[0 round(rr)-
sizes],'replicate','post'); 
  
    for n=1:sizes 
        for m=1:sizes 
            [theta,rr]=cart2pol(n,m); 
            cart(n,m)=padrho(round(rr)); 
        end 
    end 
  
    comp=padarray(cart,size(cart),'symmetric','pre'); 
    padx=padarray(x,[0 size(x,2)],'symmetric','pre')-1; 
    padx(1,1:501)=padx(1,1:501)*-1;     
  
    adjcomp=comp-comp(1,1); 
  
    figure('position',[20,20,800,800]) 
    
mesh(padx,padx,adjcomp*633/2/pi/.33),colormap(jet),xlabel('
Position (um)'),ylabel('Position (um)'),zlabel('Height 
(nm)'),title({['t= ',num2str(t(i)),' us']}) 
    zlim([-30 150]);caxis([-30 150]) 
    %halfs: 
    
%mesh(padx,padx(501:1002),adjcomp(501:1002,:)*633/2/pi/.33)
,colormap(jet),xlabel('Position (um)'),ylabel('Position 
(um)'),zlabel('Height (nm)'),title({['t= 
',num2str(t(i)+j*5),' us']}) 
    %camorbit(50,-20); ylim([0 500]) 
    filen=char({['3D_',num2str(t(i))]}); 
    saveas(gcf,[filen,'.fig']) 
    export_fig([filen,'.bmp']) 
end 
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